ASX RELEASE

14 September 2022

Ablett AC 1m Re-assays Extend Gold System

HIGHLIGHTS

- Im re-assays of Ablett Au intervals shows affinities with Ausgold Limited's Katanning gold deposits, best intervals;
 - o 22WAC0030 2m @ 0.98 g/t Au from 7m including <u>1m @ 1.34 g/t Au</u> from 8m and
 - 1m @ 0.262 g/t Au from 2m and
 - 1m @ 0.277 g/t Au from 12m and
 - 3m @ 0.277 g/t Au from 29m
 - o 22WA0036 3m @ 0.24 g/t Au from 54m incl. 1m @ 0.38 g/t Au from 56m
 - o 22WA0037 2m @ 0.28 g/t Au from 1m incl. 1m @ 0.428 g/t Au from 1m
 - o 22WAC0038 1m @ 0.53 g/t Au from 34m and
 - 1m @ 0.53 g/t Au from 44m
 - o 22WAC0045 1m @ 0.31 g/t Au from 28m

Pursuit Minerals Limited (**ASX:PUR**) ("Pursuit" or the "Company") is pleased to provide an update on 1m re-assay gold results of anomalous Air Core (AC) drill samples from the Company's Calingiri East drilling program in May.

Pursuit Managing Director, Bob Affleck, said:

"One metre resampling of anomalous 4m composites from the May 2022 AC drilling program at Ablett has identified significant gold in regolith and basement lithologies, confirming a >800m by >160m wide bedrock gold mineralising system. Our exploration team is preparing follow-up AC drilling to infill and extend the mineralisation ahead of RC drilling in late 2022".

ABLETT 1M RE-ASSAY RESULTS - Calingiri East E70/5379

In May and June Pursuit completed total of 58 AC holes for 2,085m at Calingiri East (Figure 1), with 24 holes for 971m completed at Ablett prospect. At Smogo's 16 holes for 568m were completed while at Phil's Hill West 18 holes for 519m were drilled.

At Ablett drilling identified low grade gold mineralisation in composite 4m intervals¹ beneath the auger geological anomaly reported on 31st March 2022. The drilling extended the NNW-SSE trending gold mineralisation footprint to >800m, which aligns with gold mineralisation previously discovered by Quadrio Exploration and remains open along strike.

One metre samples from anomalous 4m composite intervals were submitted to ALS Perth for Aqua Regia digest and ICP analysis. Results highlight gold mineralisation up to 1.34g/t in ferricrete regolith, in saprolite and basement rocks as well as anomalous pathfinder elements Ag, As, Bi, Cu, Mo and Pb (see Appendix 1). Gold in basement is associated with quartz-biotite alteration of mafic lithologies, with lithological boundaries appearing to be a factor in the development of mineralisation.

Analysis of these intervals highlights the alteration and mineralisation is similar to gold mineralisation at Ausgold Limited's Katanning gold project (2.1m Oz @ 1.21 g/t Au²) in WA's southwest. Figure 2 shows typical quartz-biotite alteration in hole 22WAC0030.

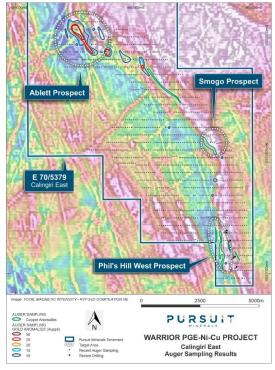


Figure 1: Calingiri East AC Drill Targets with Auger Geochemistry Anomalies

Figure 2: Quartz-biotite altered mafic in 22WAC0030, 49-50m (red bar 5mm)

¹ ASX release 8/8/2022 'Drilling Extends Ablett zone to over 800m

² https://ausgoldlimited.com/projects/katanning-gold-project/

The mineralisation footprint has broadened significantly to >160m wide with two bedrock mineralisation zones on middle section 6 555 370N (Figure 3). This accords well with mineralisation discovered by Quadrio (Caravel) on line 6 555 000N to the south. The system remains open to the south and north and additional step-out AC drilling will be required to expand the footprint before RC drilling to explore the system at depth.

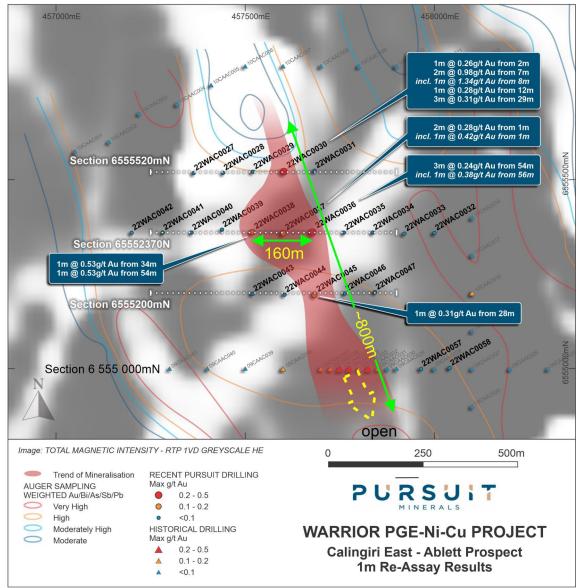
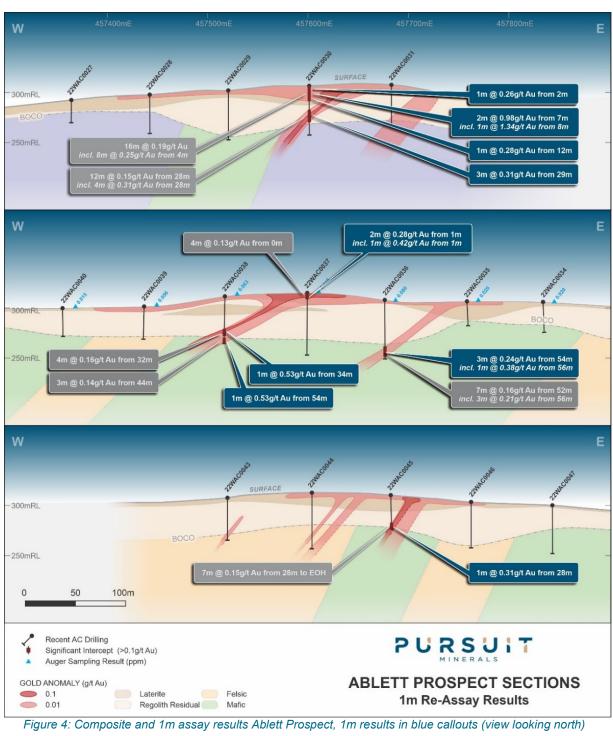



Figure 3: Existing basement gold mineralisation footprint, Ablett Prospect from 1m re-assay results

Stacked cross sections in Figure 4 show gold intervals in lateritic ferricrete (regolith), saprolite and bedrock mafic units. The presence of gold in overlying regolith discovered by Pursuit's auger sampling is closely related to the bedrock mineralisation found to date, confirming its value in targeting gold in the area.

Next Steps

- Plan additional AC drilling in Q4 at Ablett to outline limits of the system.
- Complete 3D model of Phil's Hill to aid drill planning there

This release was approved by the Board.

For more information about Pursuit Minerals and its projects, contact:

Bob Affleck	Mathew Perrot	Mark Freeman
Managing Director	Exploration Manager	Finance Director
boba@pursuitminerals.com.au	mathewp@pursuitminerals.com.au	markf@pursuitminerals.com.au
T: +61 419 908 302	T:+ 61 411 406 810	T: + 61 412 692 146

Competent Person's Statement

Statements contained in this announcement relating to exploration results, are based on, and fairly represents, information and supporting documentation prepared by Mr. Mathew Perrot, who is a Registered Practicing Geologist Member No 10167 and a member of the Australian Institute of Geoscientists, Member No 2804. Mr. Perrot is a full-time employee the Company, as the Company's Exploration Manager and has sufficient relevant experience in relation to the mineralisation style being reported on to qualify as a Competent Person for reporting exploration results, as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. In his private capacity Mr Perrot has purchased shares in the Company. Mr Perrot consents to the use of this information in this announcement in the form and context in which it appears.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of Pursuit Minerals Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements. Forwardlooking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is actually developed.

These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulations and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

Ч	Term	Meaning
	AC Drilling	Air Core drilling utilises high-pressure air and dual walled rods to penetrate the ground and return the sample to the surface through the inner tube and then through a sampling system. The ground is cut through with the use of a stee blade type bit.
	Diamond Drilling	Diamond Drilling is the process of drilling boreholes using bits inset with diamonds as the rock-cutting tool. By withdrawing a small diameter core of rock from the orebody, geologists can analyse the core by chemical assay and conduct petrologic, structural, and mineralogical studies of the rock.
	Disseminated sulphides	Sulphides throughout the rock mass – not joined together and not conductive
6	Epigenetic	Mineralisation forming after rocks were formed by later mineralising events
	Ferricrete	A hard, erosion-resistant layer of sedimentary rock, usually conglomerate or breccia, that has been cemented into a duricrust by iron oxides
	Intrusive	Body of igneous rock that has crystallized from molten magma below the surface of the Earth
	Litho-geochemistry	Study of common elemental signatures in different rock types to aid accurate logging by geologists
	Magnetotelluric traverses (MT)	A passive geophysical method which uses natural time variations of the Earth's magnetic and electric field to measure the electrical resistivity of the sub-surface and infer deep seated structures
-	Massive Sulphides	The majority of the rock mass consists of various sulphide species
	Metamorphism	The solid state recrystallisation of pre-existing rocks due to changes in heat and/or pressure and/or the introduction of fluids, i.e. without melting
_	Orogenic Gold Deposit	A type of hydrothermal mineral deposit where rock structure controls the transport and deposition of mineralised fluids. Over 75% of all gold mined by humans has been from orogenic deposits
	Pegmatite	Exceptionally coarse-grained granitic intrusive rock,
	Polymetallic mineralisation	Deposits which contain different elements in economic concentrations
	Pyroxenite	A coarse-grained, igneous rock consisting mainly of pyroxenes. It may contain biotite, hornblende, or olivine as accessories.
	RC Drilling	Reverse Circulation drilling, or RC drilling, is a method of drilling which uses dual wall drill rods that consist of an outer drill rod with an inner tube. These hollow inner tubes allow the drill cuttings to be transported back to the surface in a continuous, steady flow.
	Regolith	A blanket of unconsolidated, loose, mixed surface deposits covering solid rock. It includes dust, broken rocks, and other related materials
	Saprolite	Saprolite is a chemically weathered rock. Saprolites form in the lower zones of soil profiles and represent deep weathering of bedrock.
	Sulphides	Various chemical compounds of sulphur and metals
	Ultramafic	Very low silica content igneous and metamorphic rocks - including pyroxenites and peridotites both are known to hos
		significant Ni-Cu-PGE deposits

Abbreviation	Abbreviation meaning	Abbreviation	Abbreviation meaning
Ag	Silver	Мо	Molybdenum
Au	Gold	Ni	Nickel
As	Arsenic	Pb	Lead
Со	Cobalt	Pd	Palladium
Cr	Chromium	ppm	Parts per million

Pursuit Minerals Limited | ACN 128 806 977 | ASX: PUR

PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007

T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

	-		-	
	Cs	Caesium	Pt	Platinum
	Cu	Copper	Sb	Antimony
	Bi	Bismuth	Те	Tellurium
	В	Boron	Zn	Zinc
	DHEM	Down Hole Electro-Magnetic surveying	VHMS	Volcanic Hosted Massive Sulphide
	K	Potassium	W	Tungsten
\geq	g/t	Grams per ton		

22 23 36 37<					Append		Able			-a55a	y Resu	115		<u> </u>	
zewacoso 1 2 457602 655522 30 0.02 2.26 0.19 1055 50.9 2.05 8.67 0.133 0.11 22WAC030 3 4 457602 655522 30 0.02 13.4 0.156 0.164 0.164 0.164 0.164 0.162 22WAC030 4 5 457602 655522 30 0.02 1.44 0.085 0.288 5.86 0.144 0.048 0.022 22WAC030 5 6 457602 655522 29 0.01 1.20 0.282 8.88 0.47 1.48 0.023 0.02 22WAC030 7 8 457602 655522 29 0.01 5.3 0.18 0.488 0.47 0.48 0.03 22WAC030 11 12 457602 655522 29 0.01 5.3 0.155 4.40 0.48 0.41 0.413 0.43 0.33 22WAC030	HOLEID	From	То	East	North	RL	Ag_ppm	As_ppm	Au_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Te_ppm
22 3 457602 655522 30 0.25 51.5 0.564 0.41 1065 1.6.9 0.1.4 0.1.6 2204AC030 3 4 457602 655522 30 0.22 51.5 0.156 0.366 0.79 0.808 1.79 0.403 1.38 0.07 0.22 2204AC030 6 4 5.5 457602 655522 30 0.21 1.3 0.879 0.34 6.34 0.499 1.8 0.023 0.04 2204AC030 6 4.7 4.5602 655522 29 0.01 6.33 0.132 0.40 0.41 0.416 0.43 0.02 2204AC030 9 10 457602 655522 29 0.01 5.33 0.403 0.416 0.413 0.62 0.63 0.415 0.416 0.43 0.62 2204AC030 1 1 457602 655522 29 0.01 2.4 0.38 0.155	22WAC0030	0	1	457602	6555522	306	0.031	0.92	0.0693	0.695	67	1.05	6.93	0.053	0.009
22000003 3 4 45760 655552 30 0.02 1.10 0.026 4.7.9 0.808 1.7.9 0.808 0.7.9 0.808 1.7.9 0.808 0.7.9 0.808 1.7.9 0.808 0.7.9 0.803 0.7.9 0.808 0.7.9 0.808 0.7.9 0.808 0.7.9 0.808 0.7.9 0.808 0.7.9 0.808 0.7.9 0.808 0.7.9 0.808 0.7.9 0.818 0.801 0.801 0.801 0.801 <td>22WAC0030</td> <td>1</td> <td>2</td> <td>457602</td> <td>6555522</td> <td>305</td> <td>0.029</td> <td>2.26</td> <td>0.194</td> <td>1.045</td> <td>50.9</td> <td>2.05</td> <td>8.67</td> <td>0.133</td> <td>0.017</td>	22WAC0030	1	2	457602	6555522	305	0.029	2.26	0.194	1.045	50.9	2.05	8.67	0.133	0.017
222 222 233 4 5 4 5 5 5 5 6 4 5 5 6 4 7 6 5 5 6 4 7 6 5 5 6 4 7 6 5 5 0 0.007 6.4 0.143 0.237 47.2 0.40 1.8 0.001 0.001 220 0	22WAC0030	2	3	457602	6555522	304	0.015	4.46	0.262	0.634	41	1.065	16.9	0.146	0.018
Z2WAC030 5 6 457602 655552 30 0.007 264 0.1435 0.237 47.2 0.403 1.18 0.04 0.05 22WAC030 6 7 457602 655552 29 0.011 23 0.89 0.34 63.4 0.49 8 0.03 0.44 22WAC030 7 8 457602 655552 29 0.011 62.3 0.89 4.31 0.412 9.49 0.03 0.03 22WAC030 9 10 457602 655552 29 0.01 1.53 0.49 4.41 0.413 8.38 0.03 0.03 22WAC030 11 12 457602 655552 29 0.011 2.4 0.38 1.41 4.41 0.413 8.38 0.023 0.013 22WAC030 14 14 5760 655552 29 0.013 1.46 0.043 1.023 0.43 0.023 22WAC030	22WAC0030	3	4	457602	6555522	303	0.025	15.1	0.1595	0.396	47.9	0.808	19.7	0.136	0.027
22 22 23 30 9.21 13 9.037 9.34 63.4 9.499 8 9.034 0.499 8 0.023 0.04 22 22 655552 29 0.01 22 12 0.28 8.88 0.372 19.45 0.06 0.01 22 0.01 535 298 0.01 5.33 0.153 0.408 4.11 0.412 9.49 0.038 0.032 22 0.01 1.4 0.142 0.388 0.157 4.1 0.412 9.44 0.012 0.022 0.022 0.022 0.023 0.012 0.38 0.157 4.5 0.348 7.4 0.438 0.023 0.012 22 0.01 1.4 0.14 0.42 0.38 0.157 4.1 0.44 0.34 7.3 0.02 22 0.01 1.4 0.14 0.14 0.18 0.14 0.44 0.44 0.44 0.22	22WAC0030	4	5	457602	6555522	302	0.012	10.4	0.085	0.258	55.8	0.504	13.8	0.097	0.022
Z2WAC000 7 8 457602 655552 29 0.01 23 13 0.28 8.8 0.87 19.45 0.05 0.10 22WAC000 8 9 457602 655552 298 0.01 5.33 0.155 0.408 4.11 0.412 9.49 0.03 0.03 22WAC0030 10 1 457602 655552 295 0.01 5.33 0.153 0.408 4.11 0.413 8.46 0.03 0.02 22WAC0030 11 12 457602 655552 295 0.01 2.4 0.380 0.151 8.42 0.338 1.215 0.01 0.02 22WAC0030 13 14 457602 655552 291 0.01 1.46 0.143 0.185 0.448 7.24 0.03 0.02 22WAC030 13 14 57602 655552 277 0.12 0.88 0.17 0.123 0.31 0.065 0.15	22WAC0030	5	6	457602	6555522	301	0.007	26.4	0.1435	0.237	47.2	0.403	11.8	0.04	0.051
22 23 45 9 457602 655552 29 0.01 5.33 0.1535 0.408 4.41 0.412 9.49 0.03 0.03 22WAC0030 9 10 457602 6555522 297 0.01 5.33 0.1535 0.408 4.41 0.413 8.36 0.03 0.03 22WAC0030 11 12 457602 655552 295 0.01 2.24 0.038 0.155 4.54 0.349 7.49 0.023 0.01 22WAC0030 12 13 457602 655522 294 0.01 8.75 0.227 0.15 8.42 0.388 0.43 7.49 0.03 0.02 22WAC0030 14 15 457602 655522 292 0.01 1.46 0.043 0.055 0.43 0.43 0.43 0.43 0.43 22WAC0030 15 14 45762 655522 275 0.175 0.44 0.40 0.43 <td>22WAC0030</td> <td>6</td> <td>7</td> <td>457602</td> <td>6555522</td> <td>300</td> <td>0.021</td> <td>13</td> <td>0.0879</td> <td>0.34</td> <td>63.4</td> <td>0.499</td> <td>8</td> <td>0.023</td> <td>0.045</td>	22WAC0030	6	7	457602	6555522	300	0.021	13	0.0879	0.34	63.4	0.499	8	0.023	0.045
22WAC000 9 10 457602 6555522 29 0.01 5.33 0.133 0.408 4.11 0.412 9.49 0.038 0.02 22WAC0030 10 11 457602 6555522 295 0.01 2.24 0.038 0.403 4.04 0.413 8.36 0.02 0.01 22WAC0030 11 12 457602 655552 294 0.01 2.24 0.038 0.157 4.54 0.338 12.15 0.021 0.02 22WAC0030 13 14 457602 655552 291 0.01 8.75 0.227 0.15 8.42 0.381 1.24 0.043 0.02 22WAC0030 15 16 457602 655522 292 0.01 1.8 0.013 1.04 0.013 1.04 0.013 1.04 0.013 1.04 0.013 1.04 0.013 1.02 0.013 1.04 0.013 1.04 0.014 0.02 0.031	22WAC0030	7	8	457602	6555522	299	0.011	23	1.34	0.282	88.8	0.872	19.45	0.056	0.101
22WAC0030 10 11 457602 6555522 296 0.01 4.19 0.142 0.381 40.4 0.413 8.36 0.035 0.022 22WAC0030 11 12 457602 6555522 295 0.011 2.24 0.0388 0.1575 45.4 0.349 7.49 0.023 0.01 22WAC0030 13 14 457602 6555522 293 0.018 2.4 0.136 0.144 265 0.448 7.24 0.033 22WAC0030 14 15 457602 6555522 291 0.013 1.6 0.073 0.179 451 0.409 11.5 0.035 0.032 22WAC0030 15 16 457602 6555522 277 0.127 0.88 0.1635 1.4 1010 1.23 73 0.067 0.052 22WAC0030 30 31 457602 6555522 276 0.155 1.24 0.448 2.34 1525 0.34<	22WAC0030	8	9	457602	6555522	298	0.01	16.25	0.639	1.11	66.8	0.656	15.5	0.043	0.059
22wAC003 11 12 457602 6555522 295 0.011 2.24 0.0388 0.1575 45.4 0.349 7.49 0.023 0.011 22wAC0030 12 13 457602 6555522 294 0.012 8.75 0.227 0.151 84.2 0.338 12.15 0.051 0.023 22wAC0030 13 14 457602 6555522 292 0.015 1.4 0.146 0.148 0.448 7.24 0.033 22wAC0030 15 16 457602 6555522 291 0.013 1.66 0.073 0.179 451 0.409 1.15 0.033 22wAC0030 28 29 457602 6555522 277 0.127 0.88 0.172 2.05 1230 0.791 1.04 0.049 0.12 22wAC0030 31 32 457602 6555522 275 0.276 1.92 0.282 2.35 1.55 0.33 0.791 <td< td=""><td>22WAC0030</td><td>9</td><td>10</td><td>457602</td><td>6555522</td><td>297</td><td>0.011</td><td>5.33</td><td>0.1535</td><td>0.408</td><td>44.1</td><td>0.412</td><td>9.49</td><td>0.038</td><td>0.033</td></td<>	22WAC0030	9	10	457602	6555522	297	0.011	5.33	0.1535	0.408	44.1	0.412	9.49	0.038	0.033
22waccoos 12 13 457602 655552 294 0.012 8.75 0.227 0.151 84.2 0.338 12.15 0.051 0.022 22waccoos 13 14 457602 6555522 293 0.018 2.4 0.1365 0.144 2.65 0.448 7.24 0.043 0.03 22waccoos 14 15 457602 6555522 292 0.013 1.86 0.0073 0.195 1.6 0.448 7.24 0.043 0.02 22waccoos 28 29 457602 6555522 278 0.155 0.48 0.175 1.4 1010 1.23 7.3 0.067 0.052 22waccoos 29 30 457602 6555522 276 0.155 1.24 0.48 2.35 1.45 0.43 8.45 0.65 0.22 22waccoos 33 457602 6555522 275 0.276 1.92 0.282 2.35 1455 0.38<	22WAC0030	10	11	457602	6555522	296	0.01	4.19	0.142	0.381	40.4	0.413	8.36	0.035	0.027
22waccoos 12 13 457602 655552 294 0.012 8.75 0.227 0.151 84.2 0.338 12.15 0.051 0.022 22waccoos 13 14 457602 6555522 293 0.018 2.4 0.1365 0.144 2.65 0.448 7.24 0.043 0.03 22waccoos 14 15 457602 6555522 292 0.013 1.86 0.0073 0.195 1.6 0.448 7.24 0.043 0.02 22waccoos 28 29 457602 6555522 278 0.155 0.48 0.175 1.4 1010 1.23 7.3 0.067 0.052 22waccoos 29 30 457602 6555522 276 0.155 1.24 0.48 2.35 1.45 0.43 8.45 0.65 0.22 22waccoos 33 457602 6555522 275 0.276 1.92 0.282 2.35 1455 0.38<	22WAC0030	11	12	457602	6555522	295	0.011	2.24	0.0388	0.1575	45.4	0.349	7.49	0.023	0.013
22WAC003 13 14 457602 6555522 293 0.018 2.4 0.1365 0.144 265 0.448 7.24 0.043 0.03 22WAC003 14 15 457602 655522 292 0.015 1.4 0.0143 0.105 1.5 0.381 9.26 0.043 0.02 22WAC003 15 16 457602 655522 291 0.013 1.66 0.073 0.17 451 0.409 1.15 0.035 0.03 22WAC003 28 29 457602 655522 277 0.127 0.88 0.217 2.05 1.20 0.791 1.04 0.044 0.09 22WAC003 30 32 457602 655522 275 0.276 1.92 0.282 2.35 1.45 0.43 8.45 0.652 0.21 22WAC003 31 32 457602 655522 273 1.12 0.95 2.14 0.33 1.54 <td< td=""><td>22WAC0030</td><td>12</td><td>13</td><td>457602</td><td></td><td>294</td><td>0.012</td><td>8.75</td><td>0.227</td><td>0.151</td><td>84.2</td><td>0.338</td><td>12.15</td><td>0.051</td><td>0.028</td></td<>	22WAC0030	12	13	457602		294	0.012	8.75	0.227	0.151	84.2	0.338	12.15	0.051	0.028
22WAC0030 14 15 457602 6555522 292 0.015 1.4 0.0143 0.1085 155 0.381 9.26 0.043 0.02 22WAC0030 15 16 457602 6555522 291 0.013 1.86 0.073 0.179 451 0.409 11.5 0.033 0.03 22WAC0030 28 29 457602 6555522 276 0.175 0.8 0.1635 1.4 1010 1.23 73 0.067 0.053 22WAC0030 29 30 457602 6555522 276 0.155 1.24 0.448 2.34 1525 0.705 9.08 0.051 0.12 22WAC0030 31 32 457602 655522 275 0.276 1.92 0.448 2.34 1525 0.701 1.83 0.051 0.12 22WAC030 31 32 457602 655522 275 0.271 0.56 0.271 0.25 1.61	22WAC0030	13	14	457602	6555522	293	0.018	2.4	0.1365	0.144	265	0.448	7.24	0.043	0.031
22WAC0030 15 16 457602 6555522 291 0.013 1.86 0.0073 0.179 451 0.409 11.5 0.035 0.03 22WAC0030 28 29 457602 6555522 278 0.175 0.8 0.1635 1.4 1010 1.23 73 0.067 0.05 22WAC0030 29 30 457602 6555522 277 0.127 0.88 0.217 2.05 1230 0.791 10.4 0.044 0.09 22WAC0030 30 31 457602 6555522 276 0.155 1.24 0.448 2.34 1525 0.705 9.08 0.051 0.12 22WAC030 31 32 457602 6555522 274 2.6 0.63 0.178 7.12 7.92 0.741 18.3 0.066 0.19 22WAC0303 33 4 457602 6555522 271 1.105 0.07 0.0839 0.364 1995	22WAC0030	14	15	457602		292	0.015	1.4	0.0143	0.1085	155	0.381	9.26	0.043	0.023
22WAC0030 28 29 457602 6555522 278 0.175 0.8 0.1635 1.4 1010 1.23 73 0.067 0.053 22WAC0030 29 30 457602 6555522 277 0.127 0.88 0.217 2.05 1230 0.791 10.4 0.044 0.99 22WAC0030 30 31 457602 6555522 276 0.155 1.24 0.448 2.34 1525 0.705 9.08 0.051 0.122 22WAC0030 31 32 457602 6555522 275 0.276 1.92 0.282 2.35 1455 0.83 8.45 0.052 0.212 22WAC030 32 33 457602 6555522 273 1.17 0.95 0.178 7.12 792 0.741 18.3 0.064 0.919 22WAC0303 34 457602 655552 271 1.105 0.07 0.839 0.364 1995 0.582 <td>22WAC0030</td> <td>15</td> <td>16</td> <td>457602</td> <td></td> <td>291</td> <td>0.013</td> <td>1.86</td> <td>0.0073</td> <td>0.179</td> <td>451</td> <td>0.409</td> <td>11.5</td> <td>0.035</td> <td>0.034</td>	22WAC0030	15	16	457602		291	0.013	1.86	0.0073	0.179	451	0.409	11.5	0.035	0.034
22WAC0030 29 30 457602 6555522 277 0.127 0.88 0.217 2.05 1230 0.791 10.4 0.044 0.09 22WAC0030 30 31 457602 6555522 276 0.155 1.24 0.448 2.34 1525 0.705 9.08 0.051 0.12 22WAC0030 31 32 457602 6555522 274 2.6 0.63 0.174 4.61 827 0.694 2.3.7 0.04 0.08 22WAC0030 32 33 457602 655522 273 1.17 0.95 0.178 7.12 792 0.741 18.3 0.06 0.19 22WAC0030 34 35 457602 655522 271 1.105 0.07 0.083 0.364 1995 0.38 3.15.4 0.052 0.04 22WAC030 35 36 457602 655522 271 1.105 0.07 0.0832 1.01 1.010	22WAC0030	28	29	457602		278	0.175	0.8	0.1635	1.4	1010	1.23	73	0.067	0.05
22WAC0030 30 31 457602 6555522 276 0.155 1.24 0.448 2.34 1525 0.705 9.08 0.051 0.12 22WAC0030 31 32 457602 6555522 275 0.276 1.92 0.282 2.35 1455 0.83 8.45 0.052 0.21 22WAC0030 32 33 457602 655552 273 1.17 0.95 0.178 7.12 792 0.741 18.3 0.06 0.19 22WAC0030 34 35 457602 655552 272 0.353 -0.01 0.066 0.95 2.81 0.338 15.4 0.052 0.04 22WAC0030 35 36 457602 655522 270 1.325 -0.01 0.0327 2.03 1370 0.425 16.35 0.056 0.02 22WAC0030 35 36 457602 655522 269 0.221 0.02 0.0327 2.03 1370	22WAC0030	29	30	457602	6555522	277	0.127	0.88	0.217	2.05	1230	0.791	10.4	0.044	0.095
22WAC0030 31 32 457602 6555522 275 0.276 1.92 0.282 2.35 1455 0.83 8.455 0.052 0.21 22WAC0030 32 33 457602 6555522 274 2.66 0.63 0.174 4.61 827 0.694 23.7 0.04 0.68 22WAC0030 33 34 457602 6555522 273 1.17 0.95 0.1785 7.12 792 0.741 18.3 0.06 0.19 22WAC0030 34 35 457602 6555522 271 1.105 0.07 0.083 0.364 1995 0.582 33.1 0.081 0.012 22WAC0030 36 37 457602 6555522 270 1.325 -0.01 0.0327 2.03 1.370 0.425 16.35 0.056 0.022 22WAC0030 36 37 457602 6555522 269 0.221 0.02 0.032 1.01 0.10	22WAC0030	30	31	457602	6555522	276	0.155	1.24	0.448	2.34	1525	0.705	9.08	0.051	0.122
22WAC0030 32 33 457602 6555522 274 2.6 0.63 0.174 4.61 827 0.694 23.7 0.04 0.08 22WAC0030 33 34 457602 6555522 273 1.17 0.95 0.1785 7.12 792 0.741 18.3 0.06 0.19 22WAC0030 34 35 457602 6555522 271 1.105 0.07 0.0839 0.364 1995 0.582 33.1 0.081 0.01 22WAC0030 36 37 457602 655522 271 1.105 0.07 0.0327 2.03 1370 0.425 16.35 0.056 0.02 22WAC0030 36 37 457602 655522 269 0.221 0.02 0.0327 2.03 1370 0.425 16.35 0.056 0.02 22WAC0030 38 39 457602 655522 269 0.221 0.02 0.0327 1.01 1010 0.238 23.9 0.054 0.011 22WAC0030 38 39 <td>22WAC0030</td> <td>31</td> <td>32</td> <td>457602</td> <td>6555522</td> <td>275</td> <td>0.276</td> <td>1.92</td> <td>0.282</td> <td>2.35</td> <td>1455</td> <td>0.83</td> <td>8.45</td> <td>0.052</td> <td>0.217</td>	22WAC0030	31	32	457602	6555522	275	0.276	1.92	0.282	2.35	1455	0.83	8.45	0.052	0.217
22WAC0030 33 34 457602 6555522 273 117 0.95 0.1785 7.12 792 0.741 18.3 0.06 0.19 22WAC0030 34 35 457602 6555522 272 0.353 -0.01 0.006 0.95 281 0.338 15.4 0.052 0.04 22WAC0030 35 36 457602 6555522 271 1.105 0.07 0.0839 0.364 1995 0.582 33.1 0.081 0.01 22WAC0030 36 37 457602 6555522 270 1.325 -0.01 0.0327 2.03 1370 0.425 16.35 0.056 0.02 22WAC0030 37 38 457602 6555522 269 0.221 0.02 0.0322 1.01 1010 0.238 23.9 0.054 0.01 22WAC0030 38 39 457602 6555522 268 0.398 0.18 0.019 0.22 467 0.337 32.8 0.046 0.01 22WAC0036 52 53		32			6555522										0.089
22WAC0030 34 35 457602 6555522 272 0.353 -0.01 0.006 0.95 281 0.338 15.4 0.052 0.04 22WAC0030 35 36 457602 6555522 271 1.105 0.07 0.0839 0.364 1995 0.582 33.1 0.081 0.01 22WAC0030 36 37 457602 6555522 270 1.325 -0.01 0.0327 2.03 1370 0.425 16.35 0.056 0.02 22WAC0030 36 37 457602 6555522 269 0.221 0.02 0.0332 1.01 1010 0.238 23.9 0.054 0.014 22WAC0030 38 39 457602 655522 268 0.398 0.18 0.019 0.224 467 0.337 32.8 0.064 0.014 22WAC0030 38 39 457602 6555362 256 0.141 0.51 0.019 0.844 45.4 0.284 7.32 0.081 0.02 22WAC0036 53	22WAC0030	33	34	457602	6555522	273	1.17	0.95	0.1785	7.12	792	0.741	18.3	0.06	0.196
22WAC0030 36 37 457602 6555522 270 1.325 -0.01 0.0327 2.03 1370 0.425 16.35 0.056 0.027 22WAC0030 37 38 457602 6555522 269 0.221 0.02 0.0332 1.01 1010 0.238 23.9 0.054 0.017 22WAC0030 38 39 457602 6555522 268 0.398 0.18 0.019 0.22 467 0.337 32.8 0.046 0.017 22WAC0030 39 40 457602 6555522 267 0.141 0.51 0.0019 0.0844 45.4 0.284 7.32 0.081 0.0019 22WAC0036 52 53 457678 6555362 255 0.111 7.06 0.0383 0.843 110 1.025 17.1 0.068 0.032 22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.383 0.843 110 1.025 17.1 0.068 0.032 22WAC0036 54	22WAC0030	34	35	457602		272	0.353	-0.01	0.006	0.95	281	0.338	15.4	0.052	0.043
22WAC0030 36 37 457602 6555522 270 1.325 -0.01 0.0327 2.03 1370 0.425 16.35 0.056 0.027 22WAC0030 37 38 457602 6555522 269 0.221 0.02 0.0332 1.01 1010 0.238 23.9 0.054 0.017 22WAC0030 38 39 457602 6555522 268 0.398 0.18 0.019 0.22 467 0.337 32.8 0.046 0.017 22WAC0030 39 40 457602 6555522 267 0.141 0.51 0.0019 0.0844 45.4 0.284 7.32 0.081 0.0019 22WAC0036 52 53 457678 6555362 255 0.111 7.06 0.0383 0.843 110 1.025 17.1 0.068 0.032 22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.383 0.843 110 1.025 17.1 0.068 0.032 22WAC0036 54	22WAC0030	35	36	457602	6555522	271	1.105	0.07	0.0839	0.364	1995	0.582	33.1	0.081	0.01
22WAC0030 37 38 457602 6555522 269 0.221 0.02 0.0332 1.01 1010 0.238 23.9 0.054 0.019 22WAC0030 38 39 457602 6555522 268 0.398 0.18 0.019 0.22 467 0.337 32.8 0.046 0.019 22WAC0030 39 40 457602 6555522 267 0.141 0.51 0.0019 0.844 45.4 0.284 7.32 0.081 0.0019 22WAC0036 52 53 457678 6555362 256 0.044 1.06 0.0174 0.544 107.5 1.175 9.28 0.062 0.022 22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.0833 0.843 110 1.025 17.1 0.068 0.033 22WAC0036 54 55 457678 6555362 255 0.111 7.06 0.383 0.843 110 1.025 17.1 0.068 0.034 22WAC0036 55	22WAC0030	36	37	457602	6555522	270	1.325	-0.01	0.0327	2.03	1370	0.425	16.35	0.056	0.027
22WAC0030 38 39 457602 6555522 268 0.398 0.18 0.0109 0.22 467 0.337 32.8 0.046 0.014 22WAC0030 39 40 457602 6555522 267 0.141 0.51 0.0019 0.0844 45.4 0.284 7.32 0.081 0.002 22WAC0036 52 53 457678 6555362 256 0.044 1.06 0.0174 0.544 107.5 1.175 9.28 0.062 0.022 22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.0383 0.843 110 1.025 17.1 0.068 0.033 22WAC0036 54 55 457678 6555362 255 0.111 7.06 0.0831 0.843 110 1.025 17.1 0.068 0.033 22WAC0036 54 55 457678 6555362 253 0.062 273 0.1895 1.3 284 1.075 191 0.126 0.100 22WAC0036 56	22WAC0030	37	38	457602		269	0.221	0.02	0.0332	1.01	1010	0.238	23.9	0.054	0.019
22WAC0030 39 40 457602 6555522 267 0.141 0.51 0.0019 0.0844 45.4 0.284 7.32 0.081 0.002 22WAC0036 52 53 457678 6555362 256 0.044 1.06 0.0174 0.544 107.5 1.175 9.28 0.062 0.024 22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.0383 0.843 110 1.025 17.1 0.068 0.033 22WAC0036 54 55 457678 6555362 254 0.082 17.65 0.1575 0.891 202 0.755 147.5 0.112 0.102 22WAC0036 55 56 457678 6555362 253 0.066 273 0.1895 1.3 284 1.075 191 0.126 0.102 22WAC0036 56 57 457678 6555362 252 0.084 15.6 0.383 1.73 284 1.075 191 0.126 0.102 22WAC0036 56	22WAC0030	38	39	457602	6555522	268	0.398	0.18	0.0109	0.22	467	0.337	32.8	0.046	0.016
22WAC0036 52 53 457678 6555362 256 0.044 1.06 0.0174 0.544 107.5 1.175 9.28 0.062 0.024 22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.0383 0.843 110 1.025 17.1 0.068 0.033 22WAC0036 54 55 457678 6555362 254 0.082 17.65 0.1575 0.891 202 0.755 147.5 0.112 0.100 22WAC0036 55 56 457678 6555362 253 0.06 273 0.1895 1.3 284 1.075 191 0.126 0.100 22WAC0036 56 57 457678 6555362 253 0.06 273 0.1895 1.3 284 1.075 191 0.126 0.100 22WAC0036 56 57 457678 6555362 252 0.084 15.6 0.383 1.73 278 0.997 184 0.086 0.055 22WAC0036 56 5	22WAC0030	39	40	457602		267	0.141	0.51	0.0019	0.0844	45.4	0.284	7.32	0.081	0.005
22WAC0036 53 54 457678 6555362 255 0.111 7.06 0.0383 0.843 110 1.025 17.1 0.068 0.038 22WAC0036 54 55 457678 6555362 254 0.082 17.65 0.1575 0.891 202 0.755 147.5 0.112 0.100 22WAC0036 55 56 457678 6555362 253 0.06 273 0.1895 1.3 284 1.075 191 0.126 0.100 22WAC0036 56 57 457678 6555362 252 0.084 15.6 0.383 1.73 278 0.997 184 0.086 0.055			53			256				0.544					0.028
22WAC0036 54 55 457678 6555362 254 0.082 17.65 0.1575 0.891 202 0.755 147.5 0.112 0.100 22WAC0036 55 56 457678 6555362 253 0.06 273 0.1895 1.3 284 1.075 191 0.126 0.100 22WAC0036 56 57 457678 6555362 252 0.084 15.6 0.383 1.73 278 0.997 184 0.086 0.055														0.068	0.036
22WAC0036 55 56 457678 6555362 253 0.06 273 0.1895 1.3 284 1.075 191 0.126 0.109 22WAC0036 56 57 457678 6555362 252 0.084 15.6 0.383 1.73 278 0.997 184 0.086 0.05															0.105
22WAC0036 56 57 457678 6555362 252 0.084 15.6 0.383 1.73 278 0.997 184 0.086 0.05															
	22WAC0036		58	457678	6555362	251				0.543	286	2.33	53.9	0.119	0.032

Appendix 1: Ablett 1m AC Re-assay Results

Pursuit Minerals Limited | ACN 128 806 977 | ASX: PUR PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007 T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

HOLEID	From	То	East	North	RL	Ag_ppm	As_ppm	Au_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Te_ppm
22WAC0036	58	59	457678	6555362	250	0.12	8.56	0.0563	1.01	148.5	1.35	36	0.062	0.049
22WAC0037	0	1	457600	6555358	315	0.048	7.7	0.0626	1.36	24.9	2.77	17.05	0.177	0.059
22WAC0037	1	2	457600	6555358	314	0.061	9.69	0.428	0.975	26.1	2.7	18.65	0.198	0.112
22WAC0037	2	3	457600	6555358	313	0.028	6.51	0.146	0.846	27.4	1.81	22	0.18	0.07
22WAC0037	3	4	457600	6555358	312	0.028	3.28	0.0169	0.742	22.7	1.695	13	0.108	0.088
22WAC0038	32	33	457519	6555361	279	0.102	0.69	0.0121	0.757	1100	0.893	8.03	0.058	0.014
22WAC0038	33	34	457519	6555361	278	0.166	1.45	0.0236	78.6	1315	1.275	4.54	0.078	0.969
22WAC0038	34	35	457519	6555361	277	0.044	1.18	0.53	5.95	313	0.948	6.29	0.048	0.047
22WAC0038	35	36	457519	6555361	276	0.042	2.26	0.0911	3.91	300	1.01	5.33	0.069	0.064
22WAC0038	44	45	457519	6555361	267	0.262	1.74	0.534	222	296	2.94	4.67	0.027	5.87
22WAC0038	45	46	457519	6555361	266	0.167	0.89	0.0518	19.65	778	2.02	10.9	0.026	0.499
22WAC0038	46	47	457519	6555361	265	0.087	0.44	0.0249	7.98	289	1.82	4.04	0.027	0.233
22WAC0045	28	29	457683	6555195	281	0.018	0.28	0.315	2.14	1365	0.284	17.95	0.039	0.049
22WAC0045	29	30	457683	6555195	280	0.311	0.15	0.0234	0.1595	1185	0.235	5.1	0.052	0.014
22WAC0045	30	31	457683	6555195	279	0.031	0.25	0.0088	0.0998	874	0.154	1.705	0.035	0.012
22WAC0045	31	32	457683	6555195	278	0.129	0.39	0.0125	0.105	873	0.211	3.3	0.057	0.014
22WAC0045	32	33	457683	6555195	277	0.075	0.24	0.1805	0.0379	496	0.253	0.539	0.05	0.013
22WAC0045	33	34	457683	6555195	276	0.1	0.35	0.047	0.0376	464	0.184	0.47	0.042	0.011

Anomaly colour ranges used:

Ag (ppm):, Red > 100, Orange > 0.3, Green > 0.2, <0.2 white As (ppm): Red > 200, Orange>20, Green > 10, <10 White Au (ppm):,Red >0.5, Orange > 0.1, Green > 0.02, <0.02 White Bi (ppm):,Red > 1 Orange > 0.5, Green > 0.2, < 0.2 White Cu (ppm):,Red > 500,Orange > 100, Green > 50, <50 White Mo (ppm):,Red > 5, Orange > 2, Green > 1, <1 White Pb (ppm):,Red > 150, Orange > 60, Green > 30, <30 White

Te (ppm): Red > 5, Orange > 1, Green > 0.2, 0.2 White

JORC TABLE

1. JORC Code, 2012 Edition – Table 1 report template

1.1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 AC Samples were collected into green mining bags on a metre basis. Samples were speared in individual metres based on anomalous 4m composit assays. Spearing was undertaken by experienced personnel in a consistent manner.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	
	• Aspects of the determination of mineralisation that are Material to the Public Report.	
	• In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	• Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or	 AC Drilling was undertaken by a challenger 150 Air Core rig drilling 4 inch diameter holes to blade refusal.

PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007 T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

Criteria	JORC Code explanation	Commentary
	other type, whether core is oriented and if so, by what method, etc).	• Where drilling failed to adequately penetrate bedrock a face sampling AC Hammer was then used until the supervising geologist was satisfied that drilling had penetrated the bedrock sufficiently.
Drill sample recovery Logging	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant 	 AC Sample recovery was recorded as part of routine logging. Sample weights were recorded by the laboratory. In general, no sample bias is expected. The level of bias, if any, is not known a this stage. AC Qualitative logging of regolith, lithology, colour, weathering, and observation comments on all one metre intervals. All drilling was logged. Chips and clays from each metre of each drillhole were retained in chip trays and photographed for reference.
	 If core, whether cut or sawn and whether quarter, 	
Sub-sampling techniques and sample preparation	 half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, 	 AC Samples were collected into green mining bags on a metre basis. Samples were speared in individual meters based on anomalous 4m composite assays. Spearing was undertaken by experienced personnel in a consistent manner. Standards (lab reference material), blanks and field duplicates were taken at approximately 1:20 ratio. Sample size is appropriate for expected grain sizes. Sample type is appropriate for purpose.

PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007 T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

Criteria	JORC Code explanation	Commentary
	including for instance results for field duplicate/second-half sampling.	
2	• Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	AC - composites
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Samples were submitted to ALS Laboratories in Perth WA. Composite samples were analysed for Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, TI, U, V, W, Y, Zn, Zr with Aqua Regia digest and analysed with either Inductively Couple Plasma – Atomic Emission Spectroscopy (ICP_AES) or Inductively Couple Plasma (Mass Spectrometry (ICP_MS). Results are considered to be partial digest with underreporting of some elements in resistant minerals – such as spinels.
	• Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Standards, blanks and duplicates were submitted by the Company at the rate of 4 per 100 samples. Additionally ALS carried out duplicates from crushed samples and used internal standards. Samples have acceptable levels of accuracy and precision is established.
		 QAQC results were examined from automatic database outputs and found to be f for purpose. Resultant data was reviewed by Pursuit Staff and found to be fit for purpose
Verification of	• The verification of significant intersections by either independent or alternative company personnel.	AC
sampling and assaying	• The use of twinned holes.	 Primary hole location data was collected by hand held GPS and entered into exce spreadsheets before being transferred to the master database.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical 	No assay data has been adjusted.
	and electronic) protocols.	Significant intersections were checked by the Competent Person.
	• Discuss any adjustment to assay data.	No twinning of holes was undertaken.
		 Intercepts are reported as a weighted average of assay for intervals.

Pursuit Minerals Limited | ACN 128 806 977 | ASX: PUR PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007 T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All sample locations are recorded using a handheld GPS with a +/- 3m margin of error. The grid system used for the location of all sample sites is GDA94 - MGA (Zone 51). Relative Levels of collar locations have been determined using SRTM data (Shuttle Radar Topography Mission) which is fit for purpose.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 AC Drilling was preliminary and wide spaced in nature targeting Au+pathfinders and Au-Cu anomalism in the regolith. Drilling was planned at 320m x 80m or as single line traverses at 80 m centres. Drill spacing is not sufficient for Resource or Reserve estimation. Sampling compositing /aggregation has been applied as noted above.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 AC Drill holes were drilled vertical except for holes 22WAC0048 to 22WAC0056 which were drilled toward 090 at a dip of -60. Regional strike and dip of the geology is north, dipping to the west. No material sampling bias is anticipated to be derived from drill orientation.
Sample security	• The measures taken to ensure sample security.	AC Samples were collected into labelled calico bags before being taken to the ALS Laboratories by Pursuit Personnel.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• No review has been carried out to date.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement an land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 Drilling is on E 70/5379, held by Pursuit Exploration Pty Ltd a 100% subsidiary of Pursuit Minerals Ltd and is in good standing.
\sum	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	
Exploration done by othe parties	 Acknowledgment and appraisal of exploration by other parties. 	 June, 1997, Kevron completed a MAG/RAD/DEM survey for Stockdale Prospecting Ltd. The survey was acquired with line spacing of 250 m, line orientation of 000/180° and a mean terrain clearance of 60 m. (MAGIX ID - 1164). June 2003, UTS Geophysics completed a MAG/RAD/DEM survey for Geoscience Australia. The survey was acquired with line spacing of 400 m, line orientation of 000/180° and a mean terrain clearance of 60 m. November, 2010, Fugro Airborne Surveys completed a MAG/RAD/DEM survey for Brendon Bradley. The survey was acquired with line spacing of 50 m, line orientation of 090/270° and a mean terrain clearance of 35 m. (MAGIX ID - 3288). Dominion Mining Limited undertook auger sampling on the project in 2010. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a86032 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme. Kingsgate Consolidated Limited undertook aircore drilling within the area of Calingiri East Tenement Application in 2011. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a89716 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme=. Poseidon N.L. undertook auger soil sampling and rock chip sampling within the area of Bindi Bindi Tenement Application in 1968. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a7292 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme. Washington Resources Limited undertook rock chip sampling within the area of Bindi Bindi Tenement Application in 2008. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a82005 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme. Washington Resources Limited undertook rock chip sampling within the area of Bindi

Pursuit Minerals Limited | ACN 128 806 977 | ASX: PUR PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007 T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

Criteria	JORC Code explanation	Commentary
		 https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme.
Geology	 Deposit type, geological setting and style of mineralisation. 	The western margin of the Archean Yilgarn Craton is highly prospective for Platinum Group Elements ("PGE") and Nickel (Ni) – Copper (Cu) mineralisation associated with intrusive mafic to ultramafic rocks. The discovery of PGE-Ni-Cu mineralisation at the Julimar Project held by Chalice Gold Mines Limited (see Chalice Gold Mines ASX Announcement 23 March 2020), is the first significant PGE-Ni-Cu discovery in the region which previously only had early-stage indications or mineralisation (Yarawindah, Bindi-Bindi). Increasingly it is becoming apparent that prospective ultramafic intrusions are far more widespread than previously thought throughout the western margin of the Yilgarn Craton. The project area is located within the >3Ga age Western Gneiss Terrane of the Archean Yilgarn Block, which comprises a strongly deformed belt or gneisses, schists, quartzites, Banded Iron Formation, intruded by mafic to ultramafic rocks. The terrane is up to 70km wide, and possibly wider, and is bounded to the west of the Darling Fau and younger Archean rocks to the east. The general geological strike in northwest. The bedrock Archean metasedimentary gneisses, migmatites and intrusive mafic and ultramafic rocks occur in structurally complex settings. Dolerite dykes of Proterozoic age are widespread. Outcrops are rare and the basement geology is largely obscured by lateritic ironstones and deep saproliti weathering.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	AC A Table is included in the text of the announcement
	• easting and northing of the drill hole collar	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	$_{\odot}~$ dip and azimuth of the hole	
	 down hole length and interception depth 	
	 hole length. 	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	

ESODAI USE ODIV Pursuit Minerals Limited | ACN 128 806 977 | ASX: PUR PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007 T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade 	 AC No Top cuts have been applied to the data. All significant intercepts of >0.2 g/t Au, have been reported. Commercial software has been used to determine weighted averages (by length).
	results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. 	AC
	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drilled was generally vertical. Regional Geology trends to the north and dips to the west, furth drilling is required to determine local dip and strike.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All significant results are reported.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; 	All relevant and material data and results are reported.

Pursuit Minerals Limited | ACN 128 806 977 | ASX: PUR

PO Box 214, West Perth, WA 6872 | Suite 4, 246-250 Railway Parade, West Leederville WA 6007

T + 61 8 6500 3271 | info@pursuitminerals.com.au | www.pursuitminerals.com

Criteria	JORC Code explanation	Commentary
exploration data	geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Air Core Drilling. RC drilling.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	